Relation Extraction : A Survey
نویسندگان
چکیده
With the advent of the Internet, large amount of digital text is generated everyday in the form of news articles, research publications, blogs, question answering forums and social media. It is important to develop techniques for extracting information automatically from these documents, as lot of important information is hidden within them. This extracted information can be used to improve access and management of knowledge hidden in large text corpora. Several applications such as Question Answering, Information Retrieval would benefit from this information. Entities like persons and organizations, form the most basic unit of the information. Occurrences of entities in a sentence are often linked through well-defined relations; e.g., occurrences of person and organization in a sentence may be linked through relations such as employed at. The task of Relation Extraction (RE) is to identify such relations automatically. In this paper, we survey several important supervised, semi-supervised and unsupervised RE techniques. We also cover the paradigms of Open Information Extraction (OIE) and Distant Supervision. Finally, we describe some of the recent trends in the RE techniques and possible future research directions. This survey would be useful for three kinds of readers i) Newcomers in the field who want to quickly learn about RE; ii) Researchers who want to know how the various RE techniques evolved over time and what are possible future research directions and iii) Practitioners who just need to know which RE technique works best in various settings.
منابع مشابه
A Short Survey of Biomedical Relation Extraction Techniques
Biomedical information is growing rapidly in the recent years and retrieving useful data through information extraction system is getting more attention. In the current research, we focus on different aspects of relation extraction techniques in biomedical domain and briefly describe the state-of-the-art for relation extraction between a variety of biological elements.
متن کاملLiterature Survey on Relation Extraction and Relational Learning
Semantic relation extraction between entities plays key role in many applications in natural language processing and understanding, information retrieval, text summarizing, etc. These application require an understanding of the semantic relations between entities. We present a comprehensive review of various aspects of the entity relation extraction task. We also present a review of relation ex...
متن کاملA Survey of Deep Learning Methods for Relation Extraction
Relation Extraction is an important subtask of Information Extraction which has the potential of employing deep learning (DL) models with the creation of large datasets using distant supervision. In this review, we compare the contributions and pitfalls of the various DL models that have been used for the task, to help guide the path ahead.
متن کاملA survey of kernel methods for relation extraction
In this paper we present the main kernel approaches to the problem of relation extraction from unstructured texts. After a brief introduction to the problem and its characterization as a classification task, we present a survey of the methods and techniques used, and the results obtained. We finally suggest some future lines of work, such as the use of information retrieval techniques and the d...
متن کاملA Survey of Distant Supervision Methods using PGMs
Relation Extraction refers to the task of populating a database with tuples of the form r(e1, e2), where r is a relation and e1, e2 are entities. Distant supervision is one such technique which tries to automatically generate training examples based on an existing KB such as Freebase. This paper is a survey of some of the techniques in distant supervision which primarily rely on Probabilistic G...
متن کاملBiomedical Relation Extraction: From Binary to Complex
Biomedical relation extraction aims to uncover high-quality relations from life science literature with high accuracy and efficiency. Early biomedical relation extraction tasks focused on capturing binary relations, such as protein-protein interactions, which are crucial for virtually every process in a living cell. Information about these interactions provides the foundations for new therapeut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.05191 شماره
صفحات -
تاریخ انتشار 2017